Conversion of the Silicone Poly(dimethylsi1oxane) by Thallium(i) Ethoxide into the Ladder Polymer [{TI₂(OSiMe₂)O}₂]_n; X-Ray Structure of the Product and of Thallium(I) **Trip hen ylsila no late t**

Stephen Harvey,^a Michael F. Lappert,^b Colin L. Raston,^a Brian W. Skelton,^a Ghanshyam Srivastava,^b and Allan **H. Whitea**

^a*Department of Physical and Inorganic Chemistry, University of Western Australia, Nedlands, W.A. 6009, Australia School of Chemistry and Molecular Sciences, University of Sussex, Brighton BN 1 9QJ, U. K.*

Treating silicone grease ($OSiMe₂/m$ with an excess of TIOEt in PhMe at ambient temperature instantly yields the poly(thalliodimethylsiloxane) $[\{Tl_2(OSiMe_2)_2O\}_2]_n$ which, like $[Tl(\mu_3-OSiPh_3)]_4$ (obtained similarly from the ethoxide and HOSiPh₃), has been characterised by X-ray crystallography; both structures contain TI₄O₄ cuboids [TI-O distances and 0-TI-0 angles are in the range 2.48(2)-2.78(2) **A** and 75.4(5)-84.8(6)"].

This communication contributes to two areas: that of thal- $\lim_{t \to \infty}$ alkoxides and of the organic poly(metallosiloxanes) (for $M = TI$). Thus, we report the synthesis (Scheme 1) and the X-ray structures of $[Tl(\mu_3\text{-}OSiPh_3)]_4$ (1) (Figure 1)‡ and the ladder polymer $[\{T_2(OSiMe_2)_2O\}_2]_n(2)$ (Figure 2), \ddagger both of which contain Tl_4O_4 cuboids.

Although TlI alkoxides have been known for more than a century' and the commercially available TlOEt is becoming a convenient precursor of other T^I complexes (e.g.² cyclopentadienyls), 'hard' structural data are scarce. Because **(i)** several homologues are tetramers in solution [including Tl(OEMe₃) ($E = C$ or Si) in benzene (cryoscopy)³] and (ii) a (largely) two-dimensional X -ray structural study of crystalline TlOMe showed that the T1 atoms are positioned at the vertices of a regular tetrahedron (no other atoms were located; the crystals decomposed under Mo- K_{α} radiation),⁴ it is often assumed⁵ that T^{II} alkoxides have cubane structures, like those of the isoleptic alkali metal (K, Rb, or Cs) t-butoxides.6

Colourless crystals of compounds **(1)** and **(2)** (satisfactory microanalytical data were obtained) were prepared from thallium(1) ethoxide under ambient conditions (Scheme **1).** The thallium(1) triphenylsilanolate **(1)** was precipitated in high yield after transesterification in benzene (i in Scheme 1) and was recrystallised $(C_6H_6-C_5H_{12})$ to give the benzene solvate $[T1(\mu_3\text{-}OSiPh_3)]_4.C_6H_6$. More surprisingly, poly- $[Tl(\mu_3\text{-}OSiPh_3)]_4.C_6H_6$. More surprisingly, poly-(dimethylsiloxane) (in the form of silicone grease) rapidly

reacted with TlOEt in toluene, affording after *ca.* 12 h at -30 "C crystalline poly(thalliodimethylsi1oxane) **(2)** (ii in Scheme 1), albeit in low yield; it is only sparingly soluble in aliphatic or aromatic hydrocarbons.

We suggest that each of these reactions proceeds by nucleophilic attack of \overline{OEt} at a silicon atom of HOSiPh₃ or $(OSiMe₂)_n$. The degradation of a silicone to a disiloxane (ii in Scheme 1) is noteworthy and may have some potential; for example, reaction of $AI(OEt)$ ₃ (rather than TlOEt) with poly(dimethylsiloxane) may provide characterisable organic poly(aluminosiloxanes) . The aluminosilicates are key inorganic poly(metallosiloxanes), but analogues having pendant organic groups remain ill defined. They gained some prominence in the 1950s from Andrianov's claims that they constituted a unique class of polymers, being organic solventsoluble but infusible; an example was said to have the composition $[A1(OSiMe₃)(OSiMe₂)O]_n$, obtained by cocondensation of $\text{SiMe}_2(\text{OAc})_2$ with an equimolar portion of $Al(OPr_i)₂OSiMe₃$.7

Figure 1. Molecular projection of $[Tl(\mu_3\text{-}OSiPh_3)]_4$ (1), showing 20% thermal ellipsoids for the non-hydrogen atoms; hydrogen atoms have arbitrary radii. Edges of the Tl₄ tetrahedron are shown as solid lines. Bond distances and angles range as follows: Tl-O 2.48(2)-2.78(2), T1 . - - **T1** 3.798(2)-3.972(3), 0-Si 1.61(2)-1.67(2) A; 0-T1-0 78.3(6)-84.8(6), Tl-O-TI 93.0(6)-103.6(5), Tl-O-Si 1084 12)- $129.2(9)$ °.

t No reprints available.

 $\frac{1}{4}$ *Crystal data:* (1), $(C_{18}H_{15}OSiTl)_4$ [,] C_6H_6 $(C_{78}H_{66}O_4Si_4Tl_4)$, triclinic, $P\overline{1}$, $a = 19.33(1)$, $b = 15.79(1)$, $c = 13.90(1)$ Å, $\alpha = 64.16(6)$, $\beta = 15.79(1)$ 70.67(5), $\gamma = 73.65(6)^\circ$, *Z* shows 2 tetramers, $D_c = 1.87$ g cm⁻³, 6392 'observed' reflections $[I > 3\sigma(I)]$, $2\theta_{\text{max}} = 50^{\circ}$, $R = 0.068$, $R' = 0.080$.

⁽²⁾ $C_4H_{12}O_3Si_2Tl_2$, orthorhombic, *Pbna*, $a = 18.542(5)$, $b =$ 14.010(6), $c = 9.297(5)$ Å, $Z = 8$, $D_c = 3.15$ g cm⁻³, 1315 'observed' reflections $[I > 3\sigma(I)]$, $2\theta_{\text{max}} = 60^{\circ}$, $R = 0.057$, $R' = 0.048$ [Mo-K_a radiation, $\lambda = 0.71069$ Å, $T = 295$ K]. Atomic co-ordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1.

Figure 2. Projection of a section of a polymer strand of $[\{T1_2(O - 1)\}]$ $\sin(2\theta)$, $\sin(2)$, $\sin(2\theta)$, showng 20% thermal ellipsoids. Selected bond distances and angles are as follows: Tl-O 2.48(1)-2.59(2), $T1 \cdot \cdot \cdot T1$ 3.798(2)--4.333(2), 0(1,2)-Si(1,2) 1.62(2)-1.65(2) *R* ; 0-Tl-0 75.4(4)-80.2(5), TI-O-TI 98.1(5)-104.2(5), TI-O-Si 112.7(7)- $121.8(10)$ °.

'Equilibration' of siloxanes is of considerable importance in the production of silicones; $e.g.$ heating $O(SiMe₃)₂$ with an equimolar portion of $(OSiMe₂)₄$ at 80 °C in the presence of 0.1% [NMe₄]OH yields a mixture of linear and cyclic polysiloxanes.8

Compounds (1) and (2) comprise tetrahedral arrays **of** thallium atoms with four oxygens centred over each triangular face, each approximately equidistant from three metal centres. Thus the structures have Tl_4O_4 cuboids (Figures 1 and 2). In (1), this and the associated SiPh₃ groups represent discrete tetranuclear species; in (2), two sets of diagonally opposite oxygen atoms are linked to two other such atoms of a neighbouring cuboid by way of $-Si(Me)_{2}OSi(Me)_{2}$ - bridges, so that the overall structure is that of a one-dimensional ladder polymer. Geometries within each of the Tl_4O_4 cuboids vary significantly but in no systematic fashion. A noteworthy difference between the two structures is the wider spread of $T1 \cdot T1$ distances in (2). The disiloxane oxygen of the bridging ligand in (2) is not bound to the electrophilic three-co-ordinate thallium; this is consistent with the low Lewis basicity of silyl ethers, which have more open angles at oxygen than do organic ethers,⁹ as is the case in (2) with the angle Si-O-Si = $148(1)$ °.

Each thallium site in **(1)** or **(2)** is pyramidal, with acute 0-TI-0 angles, consistent with there being a stereochemically active lone pair of electrons associated with each T1 directed away from the centre of the cluster. The Tl-0 distances, 2.48(2), 2.59(2) **A** [in (2)] or to 2.78(2) **8,** [in (l)] are shorter than the sum of the ionic radii of T_1 ⁺ and Q_2 ⁻ (2.88 Å),¹⁰ reflecting some degree of covalent character in the T1-0 bonding. A similar bonding picture has recently been proposed for another X -ray-authenticated three-co-ordinate TI^T complex, $[THL][PF_6]$ (L = N, N', N'' -trimethyl-1,4,7-triazacyclononane) **.I1**

We thank the following for support: Australian Research Grants Scheme (W.A.), the S.E.R.C. (Sussex), and the British Council and the Indian U.G.C. (G.S.).

Received, 26th February 1988; Corn. 81007590

References

- 1 D. C. Bradley, R. **C.** Mehrotra, and D. P. Gaur, 'Metal Alkoxides,' Academic Press, London, 1978.
- 2 *Cf.* S. Harvey, C. L. Raston, B. W. Skelton, A. H. White, M. F. Lappert, and G. Srivastava, *J. Organomet. Chem.*, 1987, 328, C1; H. Schumann, C. Janiak, J. Pickardt, and U. Borner, *Angew. Chem., Int. Ed. Engl., 1987, 26, 789; and refs. therein.*
- 3 H. Schmidbaur, M. Bergfeld, and F. Schindler, *Z. Anorg. Allg. Chem.,* 1968,363,73.
- 4 L. F. Dahl, G. L. Davis, D. L. Wampler, and R. West, *J. Inorg. Nucl. Chem.,* 1962,24, 357.
- **5** *Cf.* H. Kurosowa, in 'Comprehensive Organometallic Chemistry,' eds. G. Wilkinson, F. G. A. Stone, and E. W. Abel, Pergamon, Oxford, 1982, vol. 1, Ch. **8;** A. McKillop and E. *C.* Taylor, *Adv. Organomet. Chem.,* 1973, **11,** 147; A. G. Lee, in 'Organometallic Reactions,' eds. E. I. Becker and **M.** Tsutsui, Wiley, New York, 1975, vol. **5,** ch. 1.
- 6 E. Weiss, H. Alsdorf, and H. Kühr, *Angew. Chem., Int. Ed. Engl.,* 1967,6,801; NaOBut consists of alternating hexameric and nonameric units in the crystal: J. Greiser and E. Weiss, *Chem. Ber.,* 1977, **110,** 3288; **J. E.** Davies, J. Kopf, and E. Weiss, *Acta Crystallogr., Sect. B.,* 1982, 38, 2251.
- 7 *Cf.* J. Idris Jones, in 'Developments in Inorganic Polymer Chemistry,' eds. M. F. Lappert and G. J. Leigh, Elsevier, Amsterdam, 1962, ch. 7 and **8.**
- **8 S.** W. Kantor, W. T. Grubb, and R. C. Osthoff, *J. Am. Chem. SOC.,* 1954,76,5190.
- 9 **D.** W. H. Rankin and H. E. Robertson, *J. Chem. SOC., Dalton Trans.,* 1983,265.
- 10 J. **E.** Huheey, 'Inorganic Chemistry: Principles of Structure and Reactivity,' 3rd edn., Harper and Row, New York, 1983, **p.** 73.
- 11 K. Wieghardt, M. Kleine-Boymann, **B.** Nuber, and **J.** Weiss, *Znorg. Chem.,* 1986, *25,* 1309.